
COMP 520 - Compilers

Lecture 09 – Type Checking Theory and
Contextual Analysis in PA3
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Midterm 1 soon!

•Make sure you finish PA2 on time.

•Open notes, open lecture slides, open course website.

•No other internet access. 

•Can use your IDE to read code, but cannot write any 
new code. Cannot run anything in IDE either.
• Syntax highlighting is the main goal.
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Midterm 1 soon! (2)

• The reason midterm 1 is so early in the semester is to 
gauge how you are doing.

•By looking at your midterm 1 results, you can 
determine how the rest of the semester will go.
PA3 is difficult, PA4 is even more so.
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More than one LL

this(.id)*(= Expr ;| [Expr] = Expr ; | ( ArgList? ) ; )

| boolean id = Expr ;

| id ( ( (.id)*( = Expr ; | [ Expr ] = Expr ; | ( ArgList? ) ; ) )

| [] id = Expr ; )
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How problematic is this really?
Especially given that Lexers need to be
simple state machines.



More than one LL(2)

id ( ( (.id)*( = Expr ; | [ Expr ] = Expr ; | ( ArgList? ) ; ) )

| [] id = Expr ; )

-=-=-=-=-=-=-=-=-
id ( .id(.id)*(=Expr;|[Expr]=Expr;|(ArgList?);)

| =Expr; | (ArgList?);

| [(] id = Expr;|Expr] = Expr; )
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More than one LL(3)

id ( .id(.id)*(=Expr;|[Expr]=Expr;|(ArgList?);)

| =Expr; | (ArgList?);

| [(] id = Expr;|Expr] = Expr; )

Drawback: A lot more symbols and repeated sequences.
(Shown is only one of the 3 options in the first choice)
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More than one LL(3)

this(.id)*(= Expr ;| [Expr] = Expr ; | ( ArgList? ) ; )

| boolean id = Expr ;

| id ( .id(.id)*(=Expr;|[Expr]=Expr;|(ArgList?);)

| =Expr; | (ArgList?);

| [(] id = Expr;|Expr] = Expr; )

Drawback: A lot more symbols and repeated sequences.
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Parsing, Lexing, and []

• Two ways to represent those rules as LL(1)

• If going for the simpler one, then need to scan [] as a 
token by itself.

•Question: how simple will the Lexer DFA be?
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𝜀-closure and መ𝛿, Start with NFA
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𝜀-closure and መ𝛿, Good enough for DFA?
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𝜀-closure and መ𝛿- Cannot use NFA
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Non-deterministic,
therefore not scannable.
(And whitespace issues)



𝜀-closure and መ𝛿 (2)

12
COMP 520: Compilers – S. Ali

S

[

/

]
[

𝜀

ws

\r, \t, \n, ‘ ‘

/

\n

/* *

*

*/
*

Not / /

not \n

]𝜀



𝜀-closure and መ𝛿 (3)
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What happens
if the input is:
[ /8

\n



𝜀-closure and መ𝛿 (4)
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*

*/
*

Not / /

not \n

]𝜀 𝜀-closure method of NFA will 
“rewind” back to the latest 
known final state.

How practical is rewinding?



𝜀-closure and መ𝛿 (5)
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]
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𝜀
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\r, \t, \n, ‘ ‘

/

\n

/* *

*

*/
*

Not / /

not \n

]𝜀 𝜀-closure method of NFA will 
“rewind” back to the latest 
known final state.

How practical is rewinding?
So long as it isn’t more than 
one Token, not a problem
(keep the next token in your 
accumulated text).



Type Checking
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Type-Checking Table

• For every type, should there be an entry where…
𝛼 × 𝛽 → 𝛾

E.g., int × int → int

• Is this enough?

•Will every int op int yield an int?
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Type-Checking Table (2)

• For every type, should there be an entry where…
𝛼 × 𝛽 → 𝛾

E.g., int × int → int

•What about 3 == 2?
In that case, int × int → boolean
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Type-Checking Table (3)

Therefore, Type-Checking is a 3 input, 1 output table:

( 𝛽 × 𝛼 × op ) → 𝛾

E.g., int × int × {+,-,*,/} → int

int × int × {==,!=,>,>=,<,<=} → boolean
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Operator Overloading

•Operator Overloading: give custom definitions to ops

• Example, consider a “MyData” object that can 
accumulate integers and sorts them.

• In C++, can create a method that defines:

MyData × int × {+} → MyData
Where adding integers to MyData types will call that method.
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Bad Types

•When an entry is missing, then the resultant type 
should be a specially designated type that is 
compatible with EVERY type.

• This type, “ErrorType”, prevents type-checking errors 
from filling up your compiler’s error log.
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Bad Types (2)

• This type, “ErrorType”, prevents type-checking errors 
from filling up your compiler’s error log.

•Consider miniJava: (myObj + 3) + 5;

ClassType × int × {+} → ErrorType (report error here)

ErrorType × int × {+} → ErrorType (no need to report)

Second type check was valid.
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Bad Types (3)

•Generalization:
( {ErrorType} × AnyType × AnyOp ) → ErrorType
( AnyType × {ErrorType} × AnyOp ) → ErrorType

( (TypeA,TypeB,Op) ∉ TypeTable ) → (Result=ErrorType)

( (TypeA,TypeB,Op) ∈ TypeTable ) →
( Result = GetEntry(TypeA,TypeB,Op) )
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Does Order Matter?

•Is A × B the same as B × A?
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Does Order Matter?

•Is A × B the same as B × A?

•Previous definitions state yes.

•Your thoughts?
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Does Order Matter?

•Is A × B the same as B × A?

•Previous definitions state yes.

•Not for miniJava, but yes for some 
languages.

•Why?
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Order – Language Specifications

• Language may specify that order can matter

•C++ can specify order in the program itself:
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•Why?

28
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More Totally Sane Code



More Totally Sane Code

•Why?

• You could make your 
compiler “keep” the first 
type if you wanted.

• For example: 3 + 3.2 * 4.4;

• Specify: int × float … → int

• Specify: float × int … → float
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Type-Checking Table

•Thus, how you construct your type checking 
table depends on the language.
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TypeCasting Tables
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TypeCasting / Type Conversions

• Typecasting (or the conversion of a type) does not 
have an operator.
• Formally:

𝛼 × 𝛽 → 𝛼

• Thus, the table for typecasting is:
(TypeA,TypeB) → TypeA, and some skip the → entirely
• E.g. ( (int)3.4f ) → 3 (an int), which is (int,float)→int
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TypeCasting / Type Conversions (2)

𝛼 × 𝛽 → 𝛼

• The table for typecasting takes an input of 
(TypeA,TypeB), result is just TypeA.

• If (x,y) ∉ Table, then this is a type checking error.

• The table usually has a result just to make the code 
easier to write up.
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What is the exception?



Automatic Conversions

•boolean is just a 0 or 1, so we could:

int × boolean → int

boolean × int → boolean

• This is also described as:

int → {int, boolean}

(depends on how you construct the table)
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Automatic Conversions (2)

• Java has more automatic conversions:

String × Enum → String

• The Enum will automatically become a string that 
represents the text of that enum entry.
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Automatic Conversions (3)

•Automatic conversions are AUTOMATIC

•Note:

private int somefun( int a ) { … }

…

somefun( true );

… does not require explicitly typecasting (int)true
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Automatic Conversions (4)

• Java has more automatic conversions:

String × Enum → String

•Combine this with: String × String × {+} → String
(concatenation operation) and we can add enum to 
strings!

• E.g.: myStr = myStr + someEnumVar;
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Automatic Type Casting Note

• From the previous example, we can see that if there 
does not exist a type-check entry for:

𝛼 × 𝛽 × Op

… then we have to check all possible automatic 
typecasting for both 𝛼 and 𝛽.

If there exists conflicts, manual typecasting is enforced.
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Manual Typecasting
• Consider the following:
(String,String,+)→String
(Integer,Integer,+)→Integer
TypeA a; TypeB b;

And both TypeA and TypeB can be typecasted with:
(String,TypeA), (String,TypeB), (Integer,TypeA), (Integer,TypeB)

What is the result type of a + b?
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Manual Typecasting

• Consider the following:

(String,String,+)→String

(Integer,Integer,+)→Integer

TypeA a; TypeB b; both TypeA, TypeB → {String,Integer}

What is the result type of a + b?

Answer: Your compiler must require a or b to be manually 
typecasted to either String or Integer. (String)a + b;
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Please note: miniJava
•miniJava does not have typecasting nor automatic 

conversions.

•miniJava does not allow boolean × int × Op

• This lecture is meant to strengthen your compiler 
theory, please see next section for PA3 specifics.
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Programming Assignment 3
Identification and Type-Checking
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You own the ASTs for PA3 and forward

•Can add, edit, remove any ASTs you want.
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Strategy

• Two separate Visitor implementations

• First identification, then type-checking
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Strategy (2)

• Two separate Visitor implementations

• First identification, then type-checking

• It is possible to do this in one AST traversal.
Optional, is a PA5 extra credit item.
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Identification Goal

• Every Identifier gets a “decl” field added,
of type Declaration

•We want to locate where every identifier is declared.

•Could be a VarDecl, ParameterDecl, MemberDecl, 
ClassDecl
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Identification Cache

• Identifier “x” only makes sense in context.

• Even if two identifiers’ underlying text is the same,
the declaration can be different when appearing in 
different parts of the code.
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Both use “x” as the identifier,
but can only tell them apart in context.



Identification Cache (2)

• Identifier “x” only makes sense in context.

• Even if two identifiers’ underlying text is the same,
the declaration can be different when appearing in 
different parts of the code.

• If we can resolve the Declaration, store it in that 
identifier’s decl field so we won’t have to traverse 
again.
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What is: IDTable

•An object that internally stores a mapping from String 
to Declaration.

•HashMap<String,Declaration> idTable;

49
COMP 520: Compilers – S. Ali



Scoped Identification (SI)

• Implement a Stack<IDTable>

(Where IDTable is HashMap<String,Declaration>)

• Level 0: ClassDecl

• Level 1: MemberDecl (FieldDecl, MethodDecl)

• Level 2+: LocalDecl (ParameterDecl, VarDecl)
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SI methods

•openScope

• closeScope

• addDeclaration

• findDeclaration
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openScope / closeScope

•openScope: Push a new IDTable onto the stack

• closeScope: Pop the top-most IDTable from the stack

•Question: When should you open/close a scope?
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openScope / closeScope (2)

•openScope: Push a new IDTable onto the stack

• closeScope: Pop the top-most IDTable from the stack

•When should you open/close a scope?
• Entering/Leaving a method’s StatementList
• Entering/Leaving a BlockStmt
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addDeclaration / findDeclaration

• addDeclaration: Map a String (and optional context) 
to a Declaration. If this String exists on level 2+, then 
IDError should be thrown.

• findDeclaration: With a String (and optional context), 
find a Declaration starting from the largest indexed 
scope and then working down.
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Identification Traversal – Method Body

• In a method body, if you encounter a VarDeclStmt, 
visit the VarDecl and add that identifier to the
top-most IDTable in your ScopedIdentification

• If that identifier already exists at scope level 2+, then 
that is an identification error!
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Scoped Identification – Stack Visualization
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ClassDecl “C”

MemberDecl “x”

IP0

1



Scoped Identification – Stack Visualization
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Scoped Identification – Stack Visualization
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Scoped Identification – Stack Visualization
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Scoped Identification – Stack Visualization
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Scoped Identification – Stack Visualization
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Scoped Identification – Stack Visualization
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Scoped Identification – Stack Visualization
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Scoped Identification – Stack Visualization
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More on Identification
Pre-defined names, out-of-order references
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Pre-defined Names

•miniJava doesn’t have imports, so we need to provide 
some basic functionality.

• You must MANUALLY add these entries into your 
IDTables for PA3, and we will use them in PA4.

•Note, println takes an int, not a String.
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Out-of-order References

•Note: class B is used as a type 
when B hasn’t yet been declared.

•Question: How can we put the 
classes in our IDTables ahead of 
time?
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Out-of-order References (2)

•Additionally, can refer to members 
of classes that have not yet been 
declared.

•Question: How can we put the 
members in our IDTables ahead of 
time?
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Strategy: OOO References
•Before you visit a method’s StatementList, add all 

ClassDecls in the Package AST to the level 0 IDTable. 

• Then, add all MemberDecl (FieldDecl/MethodDecl) to 
the IDTable as well.

•Never drop below scope level 1.
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Strategy: OOO References (2)
•Private members cannot be accessed externally.
•Possible strategy: only add public members first, then 

when processing a class, add that class’s private 
members.
•When leaving a class, make sure to remove those 

entries! (How would you handle this?)

Alternatively: check private later when resolving declarations. 
(this is probably easier than changing your level 1)
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Identification of QualRef
If one AST object has its own section, that means it should be the most fun part!
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Left-most Reference

•Only the left-most reference 
should be resolved normally (start 
at the top of the SI stack, then 
work down).

•Once you know the Declaration of 
the left-most reference, you have 
a context.
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Left-most Reference

•QualRef(LHS,RHS): LHS is a 
Reference, and RHS is an 
Identifier.

•With the type of the LHS (the 
context), resolve the RHS.
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Left-most Reference

•QualRef(LHS,RHS): LHS is a 
Reference, and RHS is an 
Identifier.

•With the type of the LHS (the 
context), resolve the RHS.

• a.b means “.b” is resolved in the 
context of the type of “a”, which is 
class “A”.
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Left-most Reference

•With the type of the LHS (the 
context), resolve the RHS.

•Note: this means that you can 
bypass local variables.

• “a.b.c.x” but “b”, “c”, “x” were all 
locally defined.
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A.b, where A is also a class name

•Is it correct to say 
that if “A” is a class 
name, then “x” 
must be a static 
member?
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A.b, where A is also a class name (2)
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A.b, where A is also a class name
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Static Reference

• In miniJava, if the left-most reference 
is a class name AND is not declared at 
level 1+, then the RHS must be a 
static member.

• E.g. “CLASSNAME.x”, where “x” must 
be a static member of “CLASSNAME”

79
COMP 520: Compilers – S. Ali



Static Context
• If you are in a static method, then you can only access 

static members in your Class, and public static 
members in other classes.

•Additionally, ThisRef is an identification error as “this” 
does not resolve to any declaration in a static method.

•Question: where is ThisRef in memory?
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QualRef Strategy

• Try to get the “context” by visiting the LHS reference.

•With that context, resolve the RHS.

• E.g. “a.b” will return the context of class “B”, thus 
allowing resolution of “a.b.c” where “c” is in the 
context of “B”
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No one strategy dominates all others

•How you choose to identify “context” is up to you. It 
can be a String, ClassDecl, TypeDenoter, etc.

• Even more important to plan PA3 than other 
assignments before starting to code.

• If you change your Visitor’s parameter or return type, 
you may have to redo the entire class declaration!
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PA3 – Type Checking
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Type-Checking Table

• In miniJava, type order does not matter,
so A×B×op is the same as B×A×op

• This means we can simplify our TypeChecking table.
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miniJava – Types must match

• For miniJava, the types must match. There is no 
automatic type conversions nor manual typecasting.
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miniJava – Types must match

• For miniJava, the types must match. There is no 
automatic type conversions nor manual typecasting.

•Does this mean we can use a REALLY simple type-
checking table where both types must match, and the 
result type is that type?
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miniJava – Types must match

•Does this mean we can use a REALLY simple type-
checking table where both types must match, and the 
result type is that type?

• Still need to formally clarify
Type rules.
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Type-Checking Table (2)
Type Checking Rules

Operand Types Operand Result

boolean × boolean &&, || boolean

int × int >, >=, <, <= boolean

int × int +, -, *, / int

α × α ==, != boolean

int (Unary) - int

boolean (Unary) ! boolean

88
COMP 520: Compilers – S. Ali



ClassType

• If two objects are both ClassType, are they 
comparable?
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ClassType (No polymorphism in miniJava)

• If two objects are both ClassType, 
are they comparable?

•No, the underlying Identifier text 
must match.

•Why is this enough?
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What type is ArrayType?

•Recall: new int[4]

• This expression is of ArrayType(IntType)

• Thus, it can only be assigned to variables of type
ArrayType(IntType)

•IntType is shorthand for:
BaseType( TypeKind.INT )

91
COMP 520: Compilers – S. Ali



What type is ArrayType? (2)

• For array types:
• First: Are both types ArrayType?
• Second: Do the element types match? (Recursion)

•Recursion needed to match ArrayType of ArrayType of 
ArrayType of ClassType.
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Type-Checking Methods

• Scoped Identification only uses context and 
identifiers. Therefore, overloading methods by 
parameter types/counts is not allowed in miniJava.
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Type-Checking Methods (2)

•As such, make sure there is an expression for every 
parameter, and that the types match.
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Type Errors

• The ErrorType is compatible with ALL other types, and 
the result type is always another ErrorType and this 
does not cause an error to be reported.

• If a type is not allowed in an operation with another 
type, then the result type is an ErrorType.
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Unsupported Type

• The UNSUPPORTED type is not compatible with any 
type (including itself) and causes an error to be 
reported. The result type will be ErrorType.

•Make sure String’s type is UNSUPPORTED, otherwise 
String can be initialized with new String(), which is not 
implemented in miniJava.
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Unsupported Type (2)

• The String predefined class is an UNSUPPORTED type.

• String is not supported in miniJava, but available to be 
implemented as a part of PA5.

•We need String to be able to declare the main 
method.

97
COMP 520: Compilers – S. Ali



Unsupported Type (3)

•UNSUPPORTED×ErrorType

•Question: should an error be reported?
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Unsupported Type (4)

•UNSUPPORTED×ErrorType does not need to be 
reported (only way ErrorType exists is if an error was 
reported earlier anyway).

•But it can be reported if you want to report an extra 
error where String is utilized.
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Type-Checking Strategy

• Implement a TypeChecking Visitor that uses a TypeDenoter
return type.

• Visiting a node synthesizes a TypeDenoter for that type.

• Create a method, input is the two TypeDenoters, (or one for 
Unary), and output is the resultant TypeDenoter.

• Or create a table, but that would have a lot of null entries.
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Type-Checking Strategy (2)

• Ensure index expressions are integers

• Ensure condition expressions in if/while are boolean

• Ensure operands are compatible, and return the appropriate 
type when visiting that BinExpr/UnaryExpr
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Other Contextual Constraints
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Contextual Analysis

• There are contextual parts of Java (and miniJava) that 
do not quite fit Identification or Type Checking.

•We can easily implement these as a part of either.
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Contextual Analysis (2)

• If an identifier is being declared,
then it cannot be used in the expression.

• Even if the expression can be evaluated first!
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Not allowed!



Contextual Analysis (3)

• You cannot have a variable declaration only
in a scope to itself.

•A BlockStmt (new scope) is necessary for VarDeclStmt.
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Not allowed!



Enjoy your weekend!

•PA3 released, but not due for over a month.

•PA2 due in less than a week!

•WA2 due Monday night!!!

•Midterm on Thursday 2024-02-22
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End

107
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