
COMP 520 - Compilers

Lecture 09 – Type Checking Theory and
Contextual Analysis in PA3

1

Midterm 1 soon!

•Make sure you finish PA2 on time.

•Open notes, open lecture slides, open course website.

•No other internet access.

•Can use your IDE to read code, but cannot write any
new code. Cannot run anything in IDE either.
• Syntax highlighting is the main goal.

2
COMP 520: Compilers – S. Ali

Midterm 1 soon! (2)

• The reason midterm 1 is so early in the semester is to
gauge how you are doing.

•By looking at your midterm 1 results, you can
determine how the rest of the semester will go.
PA3 is difficult, PA4 is even more so.

3
COMP 520: Compilers – S. Ali

More than one LL

this(.id)*(= Expr ;| [Expr] = Expr ; | (ArgList?) ;)

| boolean id = Expr ;

| id (((.id)*(= Expr ; | [Expr] = Expr ; | (ArgList?) ;))

| [] id = Expr ;)

4
COMP 520: Compilers – S. Ali

How problematic is this really?
Especially given that Lexers need to be
simple state machines.

More than one LL(2)

id (((.id)*(= Expr ; | [Expr] = Expr ; | (ArgList?) ;))

| [] id = Expr ;)

-=-=-=-=-=-=-=-=-
id (.id(.id)*(=Expr;|[Expr]=Expr;|(ArgList?);)

| =Expr; | (ArgList?);

| [(] id = Expr;|Expr] = Expr;)

5
COMP 520: Compilers – S. Ali

More than one LL(3)

id (.id(.id)*(=Expr;|[Expr]=Expr;|(ArgList?);)

| =Expr; | (ArgList?);

| [(] id = Expr;|Expr] = Expr;)

Drawback: A lot more symbols and repeated sequences.
(Shown is only one of the 3 options in the first choice)

6
COMP 520: Compilers – S. Ali

More than one LL(3)

this(.id)*(= Expr ;| [Expr] = Expr ; | (ArgList?) ;)

| boolean id = Expr ;

| id (.id(.id)*(=Expr;|[Expr]=Expr;|(ArgList?);)

| =Expr; | (ArgList?);

| [(] id = Expr;|Expr] = Expr;)

Drawback: A lot more symbols and repeated sequences.

7
COMP 520: Compilers – S. Ali

Parsing, Lexing, and []

• Two ways to represent those rules as LL(1)

• If going for the simpler one, then need to scan [] as a
token by itself.

•Question: how simple will the Lexer DFA be?

8
COMP 520: Compilers – S. Ali

𝜀-closure and መ𝛿, Start with NFA

9
COMP 520: Compilers – S. Ali

S

[

[]

𝜀

𝜀

Final States

𝜀-closure and መ𝛿, Good enough for DFA?

10
COMP 520: Compilers – S. Ali

S

[

[]

𝜀

𝜀

Any problems?

Final State

𝜀-closure and መ𝛿- Cannot use NFA

11
COMP 520: Compilers – S. Ali

S

[

[]

𝜀

𝜀

Non-deterministic,
therefore not scannable.
(And whitespace issues)

𝜀-closure and መ𝛿 (2)

12
COMP 520: Compilers – S. Ali

S

[

/

]
[

𝜀

ws

\r, \t, \n, ‘ ‘

/

\n

/* *

*

*/
*

Not / /

not \n

]𝜀

𝜀-closure and መ𝛿 (3)

13
COMP 520: Compilers – S. Ali

S

[

/

]
[

𝜀

ws

\r, \t, \n, ‘ ‘

/

/* *

*

*/
*

Not / /

not \n

]𝜀
What happens
if the input is:
[/8

\n

𝜀-closure and መ𝛿 (4)

14
COMP 520: Compilers – S. Ali

S

[

/

]
[

𝜀

ws

\r, \t, \n, ‘ ‘

/

\n

/* *

*

*/
*

Not / /

not \n

]𝜀 𝜀-closure method of NFA will
“rewind” back to the latest
known final state.

How practical is rewinding?

𝜀-closure and መ𝛿 (5)

15
COMP 520: Compilers – S. Ali

S

[

/

]
[

𝜀

ws

\r, \t, \n, ‘ ‘

/

\n

/* *

*

*/
*

Not / /

not \n

]𝜀 𝜀-closure method of NFA will
“rewind” back to the latest
known final state.

How practical is rewinding?
So long as it isn’t more than
one Token, not a problem
(keep the next token in your
accumulated text).

Type Checking

16
COMP 520: Compilers – S. Ali

Type-Checking Table

• For every type, should there be an entry where…
𝛼 × 𝛽 → 𝛾

E.g., int × int → int

• Is this enough?

•Will every int op int yield an int?

17
COMP 520: Compilers – S. Ali

Type-Checking Table (2)

• For every type, should there be an entry where…
𝛼 × 𝛽 → 𝛾

E.g., int × int → int

•What about 3 == 2?
In that case, int × int → boolean

18
COMP 520: Compilers – S. Ali

Type-Checking Table (3)

Therefore, Type-Checking is a 3 input, 1 output table:

(𝛽 × 𝛼 × op) → 𝛾

E.g., int × int × {+,-,*,/} → int

int × int × {==,!=,>,>=,<,<=} → boolean

19
COMP 520: Compilers – S. Ali

Operator Overloading

•Operator Overloading: give custom definitions to ops

• Example, consider a “MyData” object that can
accumulate integers and sorts them.

• In C++, can create a method that defines:

MyData × int × {+} → MyData
Where adding integers to MyData types will call that method.

20
COMP 520: Compilers – S. Ali

Bad Types

•When an entry is missing, then the resultant type
should be a specially designated type that is
compatible with EVERY type.

• This type, “ErrorType”, prevents type-checking errors
from filling up your compiler’s error log.

21
COMP 520: Compilers – S. Ali

Bad Types (2)

• This type, “ErrorType”, prevents type-checking errors
from filling up your compiler’s error log.

•Consider miniJava: (myObj + 3) + 5;

ClassType × int × {+} → ErrorType (report error here)

ErrorType × int × {+} → ErrorType (no need to report)

Second type check was valid.

22
COMP 520: Compilers – S. Ali

Bad Types (3)

•Generalization:
({ErrorType} × AnyType × AnyOp) → ErrorType
(AnyType × {ErrorType} × AnyOp) → ErrorType

((TypeA,TypeB,Op) ∉ TypeTable) → (Result=ErrorType)

((TypeA,TypeB,Op) ∈ TypeTable) →
(Result = GetEntry(TypeA,TypeB,Op))

23
COMP 520: Compilers – S. Ali

Does Order Matter?

•Is A × B the same as B × A?

24
COMP 520: Compilers – S. Ali

Does Order Matter?

•Is A × B the same as B × A?

•Previous definitions state yes.

•Your thoughts?

25
COMP 520: Compilers – S. Ali

Does Order Matter?

•Is A × B the same as B × A?

•Previous definitions state yes.

•Not for miniJava, but yes for some
languages.

•Why?

26
COMP 520: Compilers – S. Ali

Order – Language Specifications

• Language may specify that order can matter

•C++ can specify order in the program itself:

27
COMP 520: Compilers – S. Ali

•Why?

28
COMP 520: Compilers – S. Ali

More Totally Sane Code

More Totally Sane Code

•Why?

• You could make your
compiler “keep” the first
type if you wanted.

• For example: 3 + 3.2 * 4.4;

• Specify: int × float … → int

• Specify: float × int … → float

29
COMP 520: Compilers – S. Ali

Type-Checking Table

•Thus, how you construct your type checking
table depends on the language.

30
COMP 520: Compilers – S. Ali

TypeCasting Tables

31
COMP 520: Compilers – S. Ali

TypeCasting / Type Conversions

• Typecasting (or the conversion of a type) does not
have an operator.
• Formally:

𝛼 × 𝛽 → 𝛼

• Thus, the table for typecasting is:
(TypeA,TypeB) → TypeA, and some skip the → entirely
• E.g. ((int)3.4f) → 3 (an int), which is (int,float)→int

32
COMP 520: Compilers – S. Ali

TypeCasting / Type Conversions (2)

𝛼 × 𝛽 → 𝛼

• The table for typecasting takes an input of
(TypeA,TypeB), result is just TypeA.

• If (x,y) ∉ Table, then this is a type checking error.

• The table usually has a result just to make the code
easier to write up.

33
COMP 520: Compilers – S. Ali

What is the exception?

Automatic Conversions

•boolean is just a 0 or 1, so we could:

int × boolean → int

boolean × int → boolean

• This is also described as:

int → {int, boolean}

(depends on how you construct the table)

34
COMP 520: Compilers – S. Ali

Automatic Conversions (2)

• Java has more automatic conversions:

String × Enum → String

• The Enum will automatically become a string that
represents the text of that enum entry.

35
COMP 520: Compilers – S. Ali

Automatic Conversions (3)

•Automatic conversions are AUTOMATIC

•Note:

private int somefun(int a) { … }

…

somefun(true);

… does not require explicitly typecasting (int)true

36
COMP 520: Compilers – S. Ali

Automatic Conversions (4)

• Java has more automatic conversions:

String × Enum → String

•Combine this with: String × String × {+} → String
(concatenation operation) and we can add enum to
strings!

• E.g.: myStr = myStr + someEnumVar;

37
COMP 520: Compilers – S. Ali

Automatic Type Casting Note

• From the previous example, we can see that if there
does not exist a type-check entry for:

𝛼 × 𝛽 × Op

… then we have to check all possible automatic
typecasting for both 𝛼 and 𝛽.

If there exists conflicts, manual typecasting is enforced.

38
COMP 520: Compilers – S. Ali

Manual Typecasting
• Consider the following:
(String,String,+)→String
(Integer,Integer,+)→Integer
TypeA a; TypeB b;

And both TypeA and TypeB can be typecasted with:
(String,TypeA), (String,TypeB), (Integer,TypeA), (Integer,TypeB)

What is the result type of a + b?

39
COMP 520: Compilers – S. Ali

Manual Typecasting

• Consider the following:

(String,String,+)→String

(Integer,Integer,+)→Integer

TypeA a; TypeB b; both TypeA, TypeB → {String,Integer}

What is the result type of a + b?

Answer: Your compiler must require a or b to be manually
typecasted to either String or Integer. (String)a + b;

40
COMP 520: Compilers – S. Ali

Please note: miniJava
•miniJava does not have typecasting nor automatic

conversions.

•miniJava does not allow boolean × int × Op

• This lecture is meant to strengthen your compiler
theory, please see next section for PA3 specifics.

41
COMP 520: Compilers – S. Ali

Programming Assignment 3
Identification and Type-Checking

42
COMP 520: Compilers – S. Ali

You own the ASTs for PA3 and forward

•Can add, edit, remove any ASTs you want.

43
COMP 520: Compilers – S. Ali

Strategy

• Two separate Visitor implementations

• First identification, then type-checking

44
COMP 520: Compilers – S. Ali

Strategy (2)

• Two separate Visitor implementations

• First identification, then type-checking

• It is possible to do this in one AST traversal.
Optional, is a PA5 extra credit item.

45
COMP 520: Compilers – S. Ali

Identification Goal

• Every Identifier gets a “decl” field added,
of type Declaration

•We want to locate where every identifier is declared.

•Could be a VarDecl, ParameterDecl, MemberDecl,
ClassDecl

46
COMP 520: Compilers – S. Ali

Identification Cache

• Identifier “x” only makes sense in context.

• Even if two identifiers’ underlying text is the same,
the declaration can be different when appearing in
different parts of the code.

47
COMP 520: Compilers – S. Ali

Both use “x” as the identifier,
but can only tell them apart in context.

Identification Cache (2)

• Identifier “x” only makes sense in context.

• Even if two identifiers’ underlying text is the same,
the declaration can be different when appearing in
different parts of the code.

• If we can resolve the Declaration, store it in that
identifier’s decl field so we won’t have to traverse
again.

48
COMP 520: Compilers – S. Ali

What is: IDTable

•An object that internally stores a mapping from String
to Declaration.

•HashMap<String,Declaration> idTable;

49
COMP 520: Compilers – S. Ali

Scoped Identification (SI)

• Implement a Stack<IDTable>

(Where IDTable is HashMap<String,Declaration>)

• Level 0: ClassDecl

• Level 1: MemberDecl (FieldDecl, MethodDecl)

• Level 2+: LocalDecl (ParameterDecl, VarDecl)

50
COMP 520: Compilers – S. Ali

SI methods

•openScope

• closeScope

• addDeclaration

• findDeclaration

51
COMP 520: Compilers – S. Ali

openScope / closeScope

•openScope: Push a new IDTable onto the stack

• closeScope: Pop the top-most IDTable from the stack

•Question: When should you open/close a scope?

52
COMP 520: Compilers – S. Ali

openScope / closeScope (2)

•openScope: Push a new IDTable onto the stack

• closeScope: Pop the top-most IDTable from the stack

•When should you open/close a scope?
• Entering/Leaving a method’s StatementList
• Entering/Leaving a BlockStmt

53
COMP 520: Compilers – S. Ali

addDeclaration / findDeclaration

• addDeclaration: Map a String (and optional context)
to a Declaration. If this String exists on level 2+, then
IDError should be thrown.

• findDeclaration: With a String (and optional context),
find a Declaration starting from the largest indexed
scope and then working down.

54
COMP 520: Compilers – S. Ali

Identification Traversal – Method Body

• In a method body, if you encounter a VarDeclStmt,
visit the VarDecl and add that identifier to the
top-most IDTable in your ScopedIdentification

• If that identifier already exists at scope level 2+, then
that is an identification error!

55
COMP 520: Compilers – S. Ali

Scoped Identification – Stack Visualization

56
COMP 520: Compilers – S. Ali

ClassDecl “C”

MemberDecl “x”

IP0

1

Scoped Identification – Stack Visualization

57
COMP 520: Compilers – S. Ali

ClassDecl “C”

MemberDecl “x”

New IDTable

IP

0

1

2

PUSH

Scoped Identification – Stack Visualization

58
COMP 520: Compilers – S. Ali

ClassDecl “C”

MemberDecl “x”

VarDecl “x”

IP

0

1

2

Scoped Identification – Stack Visualization

59
COMP 520: Compilers – S. Ali

ClassDecl “C”

MemberDecl “x”

VarDecl “x”

IP

0

1

2

Scoped Identification – Stack Visualization

60
COMP 520: Compilers – S. Ali

ClassDecl “C”

MemberDecl “x”

VarDecl “x”

IP

0

1

2

Scoped Identification – Stack Visualization

61
COMP 520: Compilers – S. Ali

ClassDecl “C”

MemberDecl “x”

VarDecl “x”

IP

0

1

2

3

2+

New IDTable
PUSH

Scoped Identification – Stack Visualization

62
COMP 520: Compilers – S. Ali

ClassDecl “C”

MemberDecl “x”

VarDecl “x”

VarDecl “y”

IP

0

1

2

3

2+

Scoped Identification – Stack Visualization

63
COMP 520: Compilers – S. Ali

ClassDecl “C”

MemberDecl “x”

VarDecl “x”

VarDecl “y”

IP

0

1

2

3

2+

Scoped Identification – Stack Visualization

64
COMP 520: Compilers – S. Ali

ClassDecl “C”

MemberDecl “x”

VarDecl “x”

VarDecl “y”

IP

POP

0

1

2

More on Identification
Pre-defined names, out-of-order references

65
COMP 520: Compilers – S. Ali

Pre-defined Names

•miniJava doesn’t have imports, so we need to provide
some basic functionality.

• You must MANUALLY add these entries into your
IDTables for PA3, and we will use them in PA4.

•Note, println takes an int, not a String.

66
COMP 520: Compilers – S. Ali

Out-of-order References

•Note: class B is used as a type
when B hasn’t yet been declared.

•Question: How can we put the
classes in our IDTables ahead of
time?

67
COMP 520: Compilers – S. Ali

Out-of-order References (2)

•Additionally, can refer to members
of classes that have not yet been
declared.

•Question: How can we put the
members in our IDTables ahead of
time?

68
COMP 520: Compilers – S. Ali

Strategy: OOO References
•Before you visit a method’s StatementList, add all

ClassDecls in the Package AST to the level 0 IDTable.

• Then, add all MemberDecl (FieldDecl/MethodDecl) to
the IDTable as well.

•Never drop below scope level 1.

69
COMP 520: Compilers – S. Ali

Strategy: OOO References (2)
•Private members cannot be accessed externally.
•Possible strategy: only add public members first, then

when processing a class, add that class’s private
members.
•When leaving a class, make sure to remove those

entries! (How would you handle this?)

Alternatively: check private later when resolving declarations.
(this is probably easier than changing your level 1)

70
COMP 520: Compilers – S. Ali

Identification of QualRef
If one AST object has its own section, that means it should be the most fun part!

71
COMP 520: Compilers – S. Ali

Left-most Reference

•Only the left-most reference
should be resolved normally (start
at the top of the SI stack, then
work down).

•Once you know the Declaration of
the left-most reference, you have
a context.

72
COMP 520: Compilers – S. Ali

Left-most Reference

•QualRef(LHS,RHS): LHS is a
Reference, and RHS is an
Identifier.

•With the type of the LHS (the
context), resolve the RHS.

73
COMP 520: Compilers – S. Ali

Left-most Reference

•QualRef(LHS,RHS): LHS is a
Reference, and RHS is an
Identifier.

•With the type of the LHS (the
context), resolve the RHS.

• a.b means “.b” is resolved in the
context of the type of “a”, which is
class “A”.

74
COMP 520: Compilers – S. Ali

Left-most Reference

•With the type of the LHS (the
context), resolve the RHS.

•Note: this means that you can
bypass local variables.

• “a.b.c.x” but “b”, “c”, “x” were all
locally defined.

75
COMP 520: Compilers – S. Ali

A.b, where A is also a class name

•Is it correct to say
that if “A” is a class
name, then “x”
must be a static
member?

76
COMP 520: Compilers – S. Ali

A.b, where A is also a class name (2)

77
COMP 520: Compilers – S. Ali

A.b, where A is also a class name

78
COMP 520: Compilers – S. Ali

Static Reference

• In miniJava, if the left-most reference
is a class name AND is not declared at
level 1+, then the RHS must be a
static member.

• E.g. “CLASSNAME.x”, where “x” must
be a static member of “CLASSNAME”

79
COMP 520: Compilers – S. Ali

Static Context
• If you are in a static method, then you can only access

static members in your Class, and public static
members in other classes.

•Additionally, ThisRef is an identification error as “this”
does not resolve to any declaration in a static method.

•Question: where is ThisRef in memory?

80
COMP 520: Compilers – S. Ali

QualRef Strategy

• Try to get the “context” by visiting the LHS reference.

•With that context, resolve the RHS.

• E.g. “a.b” will return the context of class “B”, thus
allowing resolution of “a.b.c” where “c” is in the
context of “B”

81
COMP 520: Compilers – S. Ali

No one strategy dominates all others

•How you choose to identify “context” is up to you. It
can be a String, ClassDecl, TypeDenoter, etc.

• Even more important to plan PA3 than other
assignments before starting to code.

• If you change your Visitor’s parameter or return type,
you may have to redo the entire class declaration!

82
COMP 520: Compilers – S. Ali

PA3 – Type Checking

83
COMP 520: Compilers – S. Ali

Type-Checking Table

• In miniJava, type order does not matter,
so A×B×op is the same as B×A×op

• This means we can simplify our TypeChecking table.

84
COMP 520: Compilers – S. Ali

miniJava – Types must match

• For miniJava, the types must match. There is no
automatic type conversions nor manual typecasting.

85
COMP 520: Compilers – S. Ali

miniJava – Types must match

• For miniJava, the types must match. There is no
automatic type conversions nor manual typecasting.

•Does this mean we can use a REALLY simple type-
checking table where both types must match, and the
result type is that type?

86
COMP 520: Compilers – S. Ali

miniJava – Types must match

•Does this mean we can use a REALLY simple type-
checking table where both types must match, and the
result type is that type?

• Still need to formally clarify
Type rules.

87
COMP 520: Compilers – S. Ali

Type-Checking Table (2)
Type Checking Rules

Operand Types Operand Result

boolean × boolean &&, || boolean

int × int >, >=, <, <= boolean

int × int +, -, *, / int

α × α ==, != boolean

int (Unary) - int

boolean (Unary) ! boolean

88
COMP 520: Compilers – S. Ali

ClassType

• If two objects are both ClassType, are they
comparable?

89
COMP 520: Compilers – S. Ali

ClassType (No polymorphism in miniJava)

• If two objects are both ClassType,
are they comparable?

•No, the underlying Identifier text
must match.

•Why is this enough?

90
COMP 520: Compilers – S. Ali

What type is ArrayType?

•Recall: new int[4]

• This expression is of ArrayType(IntType)

• Thus, it can only be assigned to variables of type
ArrayType(IntType)

•IntType is shorthand for:
BaseType(TypeKind.INT)

91
COMP 520: Compilers – S. Ali

What type is ArrayType? (2)

• For array types:
• First: Are both types ArrayType?
• Second: Do the element types match? (Recursion)

•Recursion needed to match ArrayType of ArrayType of
ArrayType of ClassType.

92
COMP 520: Compilers – S. Ali

Type-Checking Methods

• Scoped Identification only uses context and
identifiers. Therefore, overloading methods by
parameter types/counts is not allowed in miniJava.

93
COMP 520: Compilers – S. Ali

Type-Checking Methods (2)

•As such, make sure there is an expression for every
parameter, and that the types match.

94
COMP 520: Compilers – S. Ali

Type Errors

• The ErrorType is compatible with ALL other types, and
the result type is always another ErrorType and this
does not cause an error to be reported.

• If a type is not allowed in an operation with another
type, then the result type is an ErrorType.

95
COMP 520: Compilers – S. Ali

Unsupported Type

• The UNSUPPORTED type is not compatible with any
type (including itself) and causes an error to be
reported. The result type will be ErrorType.

•Make sure String’s type is UNSUPPORTED, otherwise
String can be initialized with new String(), which is not
implemented in miniJava.

96
COMP 520: Compilers – S. Ali

Unsupported Type (2)

• The String predefined class is an UNSUPPORTED type.

• String is not supported in miniJava, but available to be
implemented as a part of PA5.

•We need String to be able to declare the main
method.

97
COMP 520: Compilers – S. Ali

Unsupported Type (3)

•UNSUPPORTED×ErrorType

•Question: should an error be reported?

98
COMP 520: Compilers – S. Ali

Unsupported Type (4)

•UNSUPPORTED×ErrorType does not need to be
reported (only way ErrorType exists is if an error was
reported earlier anyway).

•But it can be reported if you want to report an extra
error where String is utilized.

99
COMP 520: Compilers – S. Ali

Type-Checking Strategy

• Implement a TypeChecking Visitor that uses a TypeDenoter
return type.

• Visiting a node synthesizes a TypeDenoter for that type.

• Create a method, input is the two TypeDenoters, (or one for
Unary), and output is the resultant TypeDenoter.

• Or create a table, but that would have a lot of null entries.

100
COMP 520: Compilers – S. Ali

Type-Checking Strategy (2)

• Ensure index expressions are integers

• Ensure condition expressions in if/while are boolean

• Ensure operands are compatible, and return the appropriate
type when visiting that BinExpr/UnaryExpr

101
COMP 520: Compilers – S. Ali

Other Contextual Constraints

102
COMP 520: Compilers – S. Ali

Contextual Analysis

• There are contextual parts of Java (and miniJava) that
do not quite fit Identification or Type Checking.

•We can easily implement these as a part of either.

103
COMP 520: Compilers – S. Ali

Contextual Analysis (2)

• If an identifier is being declared,
then it cannot be used in the expression.

• Even if the expression can be evaluated first!

104
COMP 520: Compilers – S. Ali

Not allowed!

Contextual Analysis (3)

• You cannot have a variable declaration only
in a scope to itself.

•A BlockStmt (new scope) is necessary for VarDeclStmt.

105
COMP 520: Compilers – S. Ali

Not allowed!

Enjoy your weekend!

•PA3 released, but not due for over a month.

•PA2 due in less than a week!

•WA2 due Monday night!!!

•Midterm on Thursday 2024-02-22

106
COMP 520: Compilers – S. Ali

End

107

108
COMP 520: Compilers – S. Ali

109
COMP 520: Compilers – S. Ali

110
COMP 520: Compilers – S. Ali

111
COMP 520: Compilers – S. Ali

	Slide 1: COMP 520 - Compilers
	Slide 2: Midterm 1 soon!
	Slide 3: Midterm 1 soon! (2)
	Slide 4: More than one LL
	Slide 5: More than one LL(2)
	Slide 6: More than one LL(3)
	Slide 7: More than one LL(3)
	Slide 8: Parsing, Lexing, and []
	Slide 9: script epsilon-closure and delta hat , Start with NFA
	Slide 10: script epsilon-closure and delta hat , Good enough for DFA?
	Slide 11: script epsilon-closure and delta hat - Cannot use NFA
	Slide 12: script epsilon-closure and delta hat (2)
	Slide 13: script epsilon-closure and delta hat (3)
	Slide 14: script epsilon-closure and delta hat (4)
	Slide 15: script epsilon-closure and delta hat (5)
	Slide 16: Type Checking
	Slide 17: Type-Checking Table
	Slide 18: Type-Checking Table (2)
	Slide 19: Type-Checking Table (3)
	Slide 20: Operator Overloading
	Slide 21: Bad Types
	Slide 22: Bad Types (2)
	Slide 23: Bad Types (3)
	Slide 24: Does Order Matter?
	Slide 25: Does Order Matter?
	Slide 26: Does Order Matter?
	Slide 27: Order – Language Specifications
	Slide 28: More Totally Sane Code
	Slide 29: More Totally Sane Code
	Slide 30: Type-Checking Table
	Slide 31: TypeCasting Tables
	Slide 32: TypeCasting / Type Conversions
	Slide 33: TypeCasting / Type Conversions (2)
	Slide 34: Automatic Conversions
	Slide 35: Automatic Conversions (2)
	Slide 36: Automatic Conversions (3)
	Slide 37: Automatic Conversions (4)
	Slide 38: Automatic Type Casting Note
	Slide 39: Manual Typecasting
	Slide 40: Manual Typecasting
	Slide 41: Please note: miniJava
	Slide 42: Programming Assignment 3
	Slide 43: You own the ASTs for PA3 and forward
	Slide 44: Strategy
	Slide 45: Strategy (2)
	Slide 46: Identification Goal
	Slide 47: Identification Cache
	Slide 48: Identification Cache (2)
	Slide 49: What is: IDTable
	Slide 50: Scoped Identification (SI)
	Slide 51: SI methods
	Slide 52: openScope / closeScope
	Slide 53: openScope / closeScope (2)
	Slide 54: addDeclaration / findDeclaration
	Slide 55: Identification Traversal – Method Body
	Slide 56: Scoped Identification – Stack Visualization
	Slide 57: Scoped Identification – Stack Visualization
	Slide 58: Scoped Identification – Stack Visualization
	Slide 59: Scoped Identification – Stack Visualization
	Slide 60: Scoped Identification – Stack Visualization
	Slide 61: Scoped Identification – Stack Visualization
	Slide 62: Scoped Identification – Stack Visualization
	Slide 63: Scoped Identification – Stack Visualization
	Slide 64: Scoped Identification – Stack Visualization
	Slide 65: More on Identification
	Slide 66: Pre-defined Names
	Slide 67: Out-of-order References
	Slide 68: Out-of-order References (2)
	Slide 69: Strategy: OOO References
	Slide 70: Strategy: OOO References (2)
	Slide 71: Identification of QualRef
	Slide 72: Left-most Reference
	Slide 73: Left-most Reference
	Slide 74: Left-most Reference
	Slide 75: Left-most Reference
	Slide 76: A.b, where A is also a class name
	Slide 77: A.b, where A is also a class name (2)
	Slide 78: A.b, where A is also a class name
	Slide 79: Static Reference
	Slide 80: Static Context
	Slide 81: QualRef Strategy
	Slide 82: No one strategy dominates all others
	Slide 83: PA3 – Type Checking
	Slide 84: Type-Checking Table
	Slide 85: miniJava – Types must match
	Slide 86: miniJava – Types must match
	Slide 87: miniJava – Types must match
	Slide 88: Type-Checking Table (2)
	Slide 89: ClassType
	Slide 90: ClassType (No polymorphism in miniJava)
	Slide 91: What type is ArrayType?
	Slide 92: What type is ArrayType? (2)
	Slide 93: Type-Checking Methods
	Slide 94: Type-Checking Methods (2)
	Slide 95: Type Errors
	Slide 96: Unsupported Type
	Slide 97: Unsupported Type (2)
	Slide 98: Unsupported Type (3)
	Slide 99: Unsupported Type (4)
	Slide 100: Type-Checking Strategy
	Slide 101: Type-Checking Strategy (2)
	Slide 102: Other Contextual Constraints
	Slide 103: Contextual Analysis
	Slide 104: Contextual Analysis (2)
	Slide 105: Contextual Analysis (3)
	Slide 106: Enjoy your weekend!
	Slide 107: End
	Slide 108
	Slide 109
	Slide 110
	Slide 111

